Contribution of the drug transporter ABCG2 (breast cancer resistance protein) to resistance against anticancer nucleosides.
نویسندگان
چکیده
We have studied the potential contribution of ABCG2 (breast cancer resistance protein) to resistance to nucleoside analogues. In cells transfected with DNA constructs resulting in overexpression of human or mouse ABCG2, we found resistance against cladribine, clofarabine, fludarabine, 6-mercaptopurine, and 6-mercaptopurine riboside in both MDCKII and HEK293 cells and against gemcitabine only in HEK293 cells. With Transwell studies in MDCK cells and transport experiments with vesicles from Sf9 and HEK293 cells, we show that ABCG2 is able to transport not only the nucleotide CdAMP, like several other ATP-binding cassette transporters of the ABCC (multidrug resistance protein) family, but also the nucleoside cladribine itself. Expression of ABCG2 in cells results in a substantial decrease of intracellular CdATP, explaining the resistance against cladribine. The high transport rate of cladribine and clofarabine by ABCG2 deduced from Transwell experiments raises the possibility that this transporter could affect the disposition of nucleoside analogues in patients or cause resistance in tumors.
منابع مشابه
Celecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines,...
متن کاملStructure and Function of ABCG2-Rich Extracellular Vesicles Mediating Multidrug Resistance
Multidrug resistance (MDR) is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown t...
متن کاملAnticancer Drug Sequestration and Resistance Novel Extracellular Vesicles Mediate an ABCG2-Dependent
Overexpression of the multidrug efflux transporter ABCG2 in the plasma membrane of cancer cells confers resistance to various anticancer drugs, including mitoxantrone. Here, we explored the mechanism underlying drug resistance in the MCF-7 breast cancer sublines MCF-7/MR and MCF-7/FLV1000 cells in which wild-type (R482) ABCG2 overexpression is highly confined to cell-cell attachment zones. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2008